Reaction mechanism of Drosophila cryptochrome.

نویسندگان

  • Nuri Ozturk
  • Christopher P Selby
  • Yunus Annayev
  • Dongping Zhong
  • Aziz Sancar
چکیده

Cryptochrome (CRY) is a blue-light sensitive flavoprotein that functions as the primary circadian photoreceptor in Drosophila melanogaster. The mechanism by which it transmits the light signal to the core clock circuitry is not known. We conducted in vitro studies on the light-induced conformational change in CRY and its effect on protein-protein interaction and performed in vivo analysis of the lifetime of the signaling state of the protein to gain some insight into the mechanism of phototransduction. We find that exposure of CRY to blue light induces a conformation similar to that of the constitutively active CRY mutant with a C-terminal deletion (CRYΔ). This light-induced conformation has a half-life of ∼15 min in the dark at 25 °C and is characterized by increased affinity to Jetlag E3 ligase. In vivo analysis reveals that in the Drosophila S2 cell line, the signaling state induced by a millisecond light exposure has a half-life of 27 min in the dark at 0 °C during which period it is susceptible to degradation by the ubiquitin-proteasome system. These findings lead to a plausible model for circadian photoreception/phototransduction in Drosophila.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cryptochrome-dependent magnetic field effect on seizure response in Drosophila larvae

The mechanisms that facilitate animal magnetoreception have both fascinated and confounded scientists for decades, and its precise biophysical origin remains unclear. Among the proposed primary magnetic sensors is the flavoprotein, cryptochrome, which is thought to provide geomagnetic information via a quantum effect in a light-initiated radical pair reaction. Despite recent advances in the rad...

متن کامل

Millitesla magnetic field effects on the photocycle of an animal cryptochrome

Drosophila have been used as model organisms to explore both the biophysical mechanisms of animal magnetoreception and the possibility that weak, low-frequency anthropogenic electromagnetic fields may have biological consequences. In both cases, the presumed receptor is cryptochrome, a protein thought to be responsible for magnetic compass sensing in migratory birds and a variety of magnetic be...

متن کامل

Optogenetic Control of Gene Expression in Drosophila

To study the molecular mechanism of complex biological systems, it is important to be able to artificially manipulate gene expression in desired target sites with high precision. Based on the light dependent binding of cryptochrome 2 and a cryptochrome interacting bHLH protein, we developed a split lexA transcriptional activation system for use in Drosophila that allows regulation of gene expre...

متن کامل

Mechanism of magnetic field effect in cryptochrome

Creatures as varied as mammals, fish, insects, reptiles, and birds have an intriguing ‘sixth’ sense that allows them to orient themselves in the Earth’s magnetic field. Despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically sensitive radical pair reactions occurring in the retina, the light-sensitive part of animal ey...

متن کامل

Correction: Human and Drosophila Cryptochromes Are Light Activated by Flavin Photoreduction in Living Cells

Cryptochromes are a class of flavoprotein blue-light signaling receptors found in plants, animals, and humans that control plant development and the entrainment of circadian rhythms. In plant cryptochromes, light activation is proposed to result from photoreduction of a protein-bound flavin chromophore through intramolecular electron transfer. However, although similar in structure to plant cry...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 2  شماره 

صفحات  -

تاریخ انتشار 2011